# Beam-Beam Studies for Polarized Protons

S. White, W. Fischer, Y. Luo

#### 2011 Beam Parameters

• Beam parameters in 2011 (measured intensity + design tunes, emittance):

| Intensity [p/bunch]      | 1.65e11       |
|--------------------------|---------------|
| Tunes [x,y]              | 0.695 / 0.685 |
| Emittance<br>[π.mm.mrad] | 20            |
| ΔQ [2IP]                 | 0.012         |



- Current working point between 10<sup>th</sup> and 2/3<sup>rd</sup> resonances
- Coherent modes extend to  $Y.\xi$  (Yokoya factor  $Y\sim1.23$ )
- Further increasing the bunch intensity will bring us to the "beam-beam limit"

# How can we Gain Space?

#### Move to the integer tune:

See M. Bai's talk – this workshop

#### Head-on beam-beam compensation (electron lens):

- Reduces the incoherent tune spread
- Coherent modes (almost) not affected

#### Coherent beam-beam studies:

- Do we understand the current picture?
- How sensitive the  $\pi$ -mode is to the 2/3<sup>rd</sup> resonance? How much can we gain?
- **Suppression:** tune split synchro-betatron effects?

#### Increase the luminosity at the beam-beam limit

Can we operate RHIC with a crossing angle?

### Coherent Beam-Beam Modes at RHIC

 Coherent beam-beam modes routinely observed during regular operation using beam transfer function measurements:



- **Vertical plane:** clean 0 and  $\pi$ -modes observed
- Horizontal plane:  $\pi$ -mode not observed What is the source of the damping? Could this be used in the vertical plane as well? Not understood yet

# 10 Hz Triplet Vibrations



- FB system clearly brings down modulations
- Still some non-negligible leftovers → DX data very noisy is this real?
- Calculated effect on luminosity larger than what is seen in the data
- Reduce the separation by a factor 2 to match the data still  $\sim$ 0.3  $\sigma$  peak-to-peak

### **Simulations**

Strong-strong simulation with orbit fluctuations (1 IP only). Assumed 10Hz sine fluctuations – probably not fully realistic – additional FB noise?



0.698

- **4D:** Separation only  $\rightarrow \pi$ -mode modulated by 10Hz
- **6D:** lower resolution (less turns)  $\rightarrow \pi$ -mode damped by the noise
- Both cases show clear effect on the  $\pi$ -mode

# **Experiment Proposal**

- Goal: understand the effects of the leftovers from the FB systems on the coherent beam-beam modes and lifetime
- Experimental setup: use the old feedback system magnets (rotated) to modulate the orbit in the vertical plane – needs to be tested first
- Beam conditions: as close as possible the physics conditions at beginning of stores – 3x3 filling pattern
- Experiment: Scan amplitude (frequency?) and observe the effect on lifetime and coherent modes (BTF measurements) – estimated time ~2-3h

|     | y [m]     | y' [µrad] |
|-----|-----------|-----------|
| IP6 | 7.01e-05  | 71        |
| IP8 | -5.14e-06 | 129       |
| IP2 | 9.44e-05  | -51       |

Orbit distortion (MADX) at the IPs for maximum kick in q3o6 (large  $\beta$ )



### Coherent Modes with HD Compensation

 Take the simplest situation: 3x3 colliding in IP6 and IP8 – 3e11 p/bunch would give a HD tune shift ~0.022 (coherent ~ 0.027)



- Case w/o electron lens additional modes w.r.t. the data:
  - Position of the "inner" modes depends on the phase advance IP-to-IP  $\rightarrow$  here lattice largely different from "nominal"
  - Very close to the incoherent continuum → additional non-linearities (chromaticity, multipolar field components) could damp them
- Coherent modes almost no affected by the elens → loss of landau damping?
  What about betatron resonances (2/3<sup>rd</sup>)?

# Coherent Instability Observed at the LHC

• Coherent beam-beam modes observation at the LHC: X. Buffat et al., "Observation of Coherent Beam-Beam Effects in the LHC", IPAC11



- Coherent modes observed without external excitation: not naturally damped
- Coherent instability was observed impedance under investigation
- In regular physics conditions the transverse damper is always on. Coherent modes or instabilities not observed
- Coherent modes can become unstable if not damped → issue for the elens?

# **Coherent Modes Suppression**

- Even if the 10 Hz noise is the source for the damping in the horizontal plane this should NOT be used as a damping tool → emittance/lifetime
- A simple solution to suppress the coherent mode is to use a tune split



- Stay as far as possible to the 10<sup>th</sup> order resonance
- Lifetime close to 0.75 should be ok LHC: 0.31 / 0.32
- Provides sufficient tune split to fully suppress the coherent modes

# **Experiment Proposal**

• **Goal:** Measure the impact of the coherent modes on lifetime, 2/3<sup>rd</sup> resonance stop-band, available space in the tune diagram. Comparison with and without coherent modes.

#### Beam conditions:

- 6x6 with only 3x3 bunches colliding at the time (filling pattern)
- maximum head-on tune shift desirable (high bunch intensity)
- Bunches should be as equal as possible for comparison

#### Experiment – one store:

- Collide the first three bunches tune scan, measure 2/3 stop band only the colliding bunches should suffer (HD tune shift)
- Separate beams move one beam to ~0.75
- Rotate longitudinally, collide the remaining 3 "fresh" bunches and repeat first point

Estimated time: 2h maximum

# Operation at the Beam-Beam Limit

 When operating at the beam-beam limit we can use the properties of the crossing angle to further increase the luminosity:



Luminosity and Beam-Beam parameters as function of the crossing angle

$$\xi_{x} = \frac{N r_{0}}{2\pi \sigma_{x} F(\phi)(\sigma_{y} + \sigma_{x} F(\phi))}$$
$$\xi_{y} = \frac{N r_{0}}{2\pi \sigma_{x}(\sigma_{y} F(\phi) + \sigma_{x})}$$

$$L(\phi) = \frac{L_0}{F(\phi)} \propto N^2$$

Use 2 IPs and alternate crossing angle. For round beams:

$$\xi_x + \xi_y \propto \frac{N}{F(\phi)}$$

Keep  $\xi_{tot}$  constant using N => L increases linearly with N

### Possible Gain for RHIC



- Assume the beam-beam limit is around 2.0e11 p/bunch
- This technique requires high bunch intensity new source
- $\bullet$  It should be possible to accommodate 200  $\mu rad$  angle with regular orbit correctors
  - → about 20% gain much larger with DX and D0
- Also allows for leveling
- **Prerequisites:** what intensity can we reach? what are the maximum tune shift and crossing angle?
- => Last two points can be checked without the new source
- => Could be a good alternative until the elens is operational

# Synchro-Betatron Effects

• Operating with a crossing angle will excite synchro-betatron resonances through the beambeam force – damping of the  $\pi\text{-mode}$  depends on Q  $_{_{S}}$  /  $\xi$ 





- Simulations done for HL-LHC:  $Q_s \sim 0.002$ , at RHIC  $Q_s \sim 0.0005$
- Taking RHIC parameters and assuming 200  $\mu$ rad angle  $\Phi$ ~0.9 and  $\xi$ ~0.01. To be compared with  $\Phi$ ~1 and  $\xi$ ~0.015 in the simulations
- We are about a factor 3 off  $\rightarrow$  colliding only one IP and increased  $Q_s$  should bring us in the damping regime never observed experimentally (to my knowledge)

# **Experiments Proposal**

#### Goals:

- Measure the residual crossing angle (angle scans)
- Assess the maximum achievable tune shift and crossing angle
- Synchro-betatron effects with large Piwinski angle (academic)

#### Experiment – 2 stores:

- 1<sup>st</sup> store: physics conditions (fewer bunches): measure residual crossing angle and determine maximum crossing angle
- **2**<sup>nd</sup> **store:** inject high intensity bunches (3x3) with crossing angle in increase tune shift by decreasing the crossing angle
- **Alternative:** fill the machine with bunches of different intensity / un-squeezed beams (more aperture)
- For each store measure lifetime, emittance, coherent modes vs crossing angle
- **Estimate time:** 2x2-3h two APEX sessions 2<sup>nd</sup> store parameters will depend on the results of the first experiment

#### **HL-LHC Studies**

 Most efficient way for BNL to contribute to HL-LHC is through beam experiments which are also interesting for RHIC

|                                                       | HL-LHC Parameters     |
|-------------------------------------------------------|-----------------------|
| N [p/bunch]                                           | 2.0e11                |
| ε <sub>N</sub> [μm]                                   | 2.5                   |
| $Q_x / Q_y / Q_s$                                     | 0.31 / 0.32 / 0.002   |
| β* [m]                                                | 0.15                  |
| $\sigma_{s}$ [m]                                      | 0.075                 |
| dp/p                                                  | 1.129e-4              |
| θ [μrad]                                              | 475 (~10σ)            |
| N <sub>LR</sub>                                       | 18-24                 |
| L <sub>peak</sub> [cm <sup>-2</sup> s <sup>-1</sup> ] | 7.4e34 (2.0e35 w. CC) |

- Target is to reach 2.0e35 virtual luminosity leveled to 5e34
- Can be achieved with crab cavities and leveling with crossing angle
- Recent studies indicate that the crossing angle may have to be increased to 600  $\mu$ rad
- Relevant beam-beam studies:
  - Long-range interactions
  - Crab cavity noise
  - Synchro-betatron effects with large Piwinski parameter

Some useful studies can be done at RHIC

#### What can we do at RHIC?

- Beam-beam and noise was identified as a possible issue for operation with crab cavities – also relevant at RHIC for the electron lens:
  - 10Hz noise study already proposed what would be really interesting for HL-LHC is "white noise"
  - How easy would it be to inject "white noise" into the RHIC beam? Damper?
- Large Piwinski angle is also of some interest:
  - With nominal parameters we can only reach  $\Phi$ ~1 with significantly smaller synchrotron tune
  - Is it possible to use DX and D0 magnets? Can we increase the synchrotron tune?
    Up to which value?
- Coherent beam-beam studies also triggered interest
- Except for LR interaction the problematic for HL-LHC is similar to RHIC and the proposed studies could be compatible with existing RHIC proposals. CERN expressed interest in conducting joint experiments if time is allocated

### Summary

- 3 experiments proposed for an estimated time of about 10h:
  - 10 Hz noise (2-3h)
  - Tune scan / tune split coherent modes suppression (2h)
  - Crossing angle measurements / maximum head-on tune shift / SB effects (2x2-3h)
  - Some of these experiments can be combined to optimize beam time
- The main goal is to understand the current limitations and identify possible issues for operation with electron lens
- CERN expressed interest in joint experiments:
- Most of the proposed studies would be compatible which current APEX proposals
- Priority seems to be the study of beam-beam & noise ("white noise" preferably)